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Abstract—The ability to accurately judge another person’s emotional states with a short duration of observations is a unique

perceptual mechanism of humans, termed as the thin-sliced judgment. In this work, we propose a computational framework based on

mutual information to identify the thin-sliced emotion-rich behavior segments within each session and further use these segments to

train the session-level affect regressors. Our proposed thin-sliced framework obtains regression accuracies measured in Spearman

correlations of 0.605, 0.633, and 0.672 on session-level attributes of activation, dominance, and valence, respectively. It outperforms

framework using data of the entire session as baseline. The significant improvement in the regression correlations reinforces the

thin-sliced nature of human emotion perception. By properly extracting these emotion-rich behavior segments, we obtain not only an

improved overall accuracy but also bring additional insights. Specifically, our detailed analyses indicate that this thin-sliced nature in

emotion perception is more evident for attributes of activation and valence, and the within-session time distribution of emotion-salient

behavior is located more toward the ending portion. Lastly, we observe that there indeed exists a certain set of behavior types that carry

high emotion-related content, and this is especially apparent in the extreme emotion levels.

Index Terms—Emotion recognition, multimodal behaviors, thin-sliced affect perception, mutual information

Ç

1 INTRODUCTION

UNDERSTANDING the underlying human perception and
decision-making mechanism has been a popular area

of research in psychology for a long time (e.g., [1], [2], [3]).
Various studies have pointed out a particular powerful
human perceptual capability, i.e., the ability to integrate
information from multiple perceived time events in order to
come up with a single overall-global holistic judgment of
higher-level (e.g., preferences, emotions, personalities, etc)
attributes. This human perceptual mechanism is not only
evident in daily life, but also is being leveraged as an impor-
tant ability in aiding research across fields in behavior scien-
ces, where human evaluation is repeatedly used as the core
methodology for carrying out evidence-based analyses. For
example, coding distressed couples behaviors to analyze
the effectiveness of therapy sessions [4], [5], assessing the
emphatic quality of the therapists in drug addiction rehabil-
itation [6], [7], and measuring the atypical socio-communi-
cative behaviors of autistic children during Autism
Diagnostic Observation Schedule (ADOS) interviews [8].

Researchers have previously proposed a theory stating
that there exists an unique property of this particular human
perceptual mechanism, i.e., an accurate perception of
another person’s higher-level attributes, e.g., personality [9],
intelligence [10], affect [10], and even negotiation outcome
[11], can in fact be obtained with a short duration of observa-
tions. This mechanism is termed as the thin-slice theory
of judgment [12], [13]. A vast number of psychological

experiments have investigated and corroborated this
hypothesis in various contexts. For example, Fowler et al.
conducted a study and demonstrated that lay raters were
indeed capable of reliably and validly detecting features of
psychopathy from small excerpts (a couple seconds long) of
recorded interviews from 97 maximum-security inmates
[14]. Naumann et al. additionally showed that human’s
first impression can achieve reliable accuracy on assessing
other people’s ten personality factors by merely observing
the static full-body photographs [15]. The same phenome-
non applies in cases of perceiving personality disorder;
Oltmanns et al. designed an experiment and demonstrated
that by observing a minimal 30-seconds of video-taped
interviews, untrained undergraduate students were in fact
capable of accurately rate the personality characteristics
associated with different personality disorders [16]. Lastly
on judging interpersonal affective interaction styles, Ovies
et al. pointed out the feasibility of utilizing thin-sliced
information, i.e., snippets of smile intensity and tactile con-
tact, in order to gain an understanding of the kindergarten-
ers and their family members’ affective interaction styles
at home [17].

Computationally modeling this thin-slice theory of judg-
ment has also becoming more relevant for research fields
that are at the cross-cutting between behavior science and
engineering, e.g., behavioral signal processing (BSP) is one
such fields. BSP aims at providing objective computational
frameworks, e.g., those derived based on direct modeling
of audio-video recordings and/or physiological sensory
data, for behavior science experts in order to facilitate
a more informed decision making [18], [19]. In BSP-related
application domains such as healthcare, education, and per-
forming art, researchers develop computational frameworks
in order to mitigate issues centered around subjectivity of
manual human annotation. Examples of applications are
listed below: in couple therapy, trained experts annotate

� The authors are with the Department of Electrical Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan.
E-mail: winston810719@gmail.com, cclee@ee.nthu.edu.tw.

Manuscript received 17 June 2017; revised 4 Mar. 2018; accepted 12 Mar.
2018. Date of publication 16 Mar. 2018; date of current version 25 Nov. 2020.
(Corresponding author: Chi-Chun Lee.)
Recommended for acceptance by A. A. Salah.
Digital Object Identifier no. 10.1109/TAFFC.2018.2816654

560 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2020

1949-3045� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0186-4321
https://orcid.org/0000-0003-0186-4321
https://orcid.org/0000-0003-0186-4321
https://orcid.org/0000-0003-0186-4321
https://orcid.org/0000-0003-0186-4321
mailto:
mailto:


couples’ behaviors after watching 10-minute long interactions
[20], [21], in education setting, expert coaching principals
grade the candidate principals’ speech after listening to their
3-minute long impromptu talk as part of the principal-ship
certification program [22], [23], and in performing art, audien-
ces and/or director often assess the quality of actors’ affective
expressions at the level of minute-long even hour-long com-
plete plays [24], [25]. Knowing that there exists a thin-sliced
nature in the human’s perceptual mechanism, when deriving
appropriate signal-based analytics for these humans global
perceptual ratings, identifying which salient slices of behav-
iors that contribute to the overall perception becomes essen-
tial in the development of robust algorithms. This would help
in advancing the robustness of diagnostic instruments or
trainingmaterials’ design, even in possibly bringing quantita-
tive evidence into humans perceptualmechanism [26].

While there is already a vast amount of evidence in
showing the existence of thin-sliced perception in the
psychology literature, the engineering works involved in
deriving framework that aims at automatically identifying
emotionally thin-sliced behavior segments remain limited,
if any. A few notable related works in other application
domains are listed below: Ozlim et al. leveraged auditory
attention model in order to derive salient low-level acoustic
features to improve the prominent syllable detection algo-
rithm [27]. Gunes found that by using temporal segmental
data, it improved the overall system of affect recognition
from visual modality [28]. Han boosted the performance of
emotion recognition by choosing the segments with highest
energy in an utterance as the training samples, i.e., consider-
ing those as containing the most prominent emotional infor-
mation in the audio modality [29]. Gibson et al. proposed a
multiple instance learning-based framework to identify
salient multimodal local behavior events in order to per-
form session-level behavior coding in couple therapy [30],
[31], and this particular application domain has also been
carried out using sequential probability ratio test [32].

Furthermore, while there is a large body of multimodal
emotion recognition works that have been previously pro-
posed in the past decades (e.g., [33], [34], [35], [36]), most of
these works deal with scenarios of utterance-level (often
seconds-long) recognition. In thiswork, we present a computa-
tional framework in identifying within-session thin-sliced
behavior segments that bear emotion-rich information about the
perceived session-level (minutes-long) affect. Specifically, we
use the USC CreativeIT database to carry out this work [37].
The USC CreativeIT is a dyadic affective database includes
multimodal behavior data (audio and full-body motion cap-
ture recordings) and the session-level emotion attributes anno-
tations. Each session lasts approximately three minutes long.
With the availability of session-level emotion annotations
and multimodal behavior data, the USC CreativeIT database
presents an ideal opportunity for systematic analyses of
humans’ thin-sliced affective perception at the session-level.

In this work, we present a mutual information based
framework in identifying within-session thin-sliced emo-
tion-rich behavior segments for global session-level emotion
attributes. The framework first introduces the use of com-
puting mutual information between discretized session-
level attribute and quantized multimodal behavior clusters
as criterion in selecting segments containing high emotion
information. Then, we propose an automatic session-level
emotion attribute regression framework by learning feature
representation using Fisher-vector encoding (FV) [38]. FV

encoding is done by computing the Fisher scoring of data
samples with respect to the first and second order statistics
of a background Gaussian Mixture Model, resulting in a
fixed-length high dimensional vector representation on
these thin-sliced emotion-rich behavior segments.

Specifically, the two major study contributions of the
paper are listed below:

� Thin-sliced Behavior Segments Analyses: detailed analy-
ses of the identified thin-sliced emotion-rich behavior
segments in terms of their time allocation within a
session, their effect in changing the original behavior
types’ distributions, and finally a detailed session-
level emotion-dependent analysis

� Global Emotion Recognition using the Thin-Sliced Seg-
ments: incorporating thin-sliced perception by utiliz-
ing the identified emotion-rich behavior segments to
enhance the session-level emotion recognition.

Our detailed analyses bring insights into demonstrating
how streams of multimodal behavior manifestation may
affect humans integrative perception of different emotion
constructs when they make a judgment on the interaction as
a whole. Further our proposed session-level emotion regres-
sor obtain Spearman correlations of 0.605, 0.633, and 0.672
on attributes of activation, dominance, and valence by
leveraging the identified within-session thin-sliced emotion-
rich behavior segments. To the best of our knowledge, this
work is one of first in providing a systematic analysis and
computational method in identifying thin-sliced emotional-
rich behavior segments in a spontaneous large-scale corpus
and further utilize them to improve predictive power in
tasks of session-level affect regressions.

The rest of the paper is organized as follows: research
method, including database, multimodal feature extraction,
the proposed emotion-rich behavior segment identification
method are in Section 2. Detailed thin-sliced behavior seg-
ments analyses are provided in Section 3. Recognition
results from the automatic thin-sliced based session-level
affect regressors are described in Section 4. Finally, conclu-
sions and future works are given in Section 5.

2 RESEARCH METHODOLOGY

2.1 The USC CreativeIT Database
We use the USC CreativeIT database for the present work
[37]. The USC CreativeIT is a multimodal dyadic interaction
database collected as a result from the combined expertise
and effort from engineers and theatrical professionals. This
database includes performances of dyadic improvisations
based on an established theatrical acting technique (the
Active Analysis [39]) in order to help elicit natural expres-
sive behaviors. There are two types of performance sessions:
the first one is called the 2-sentence play, where each actor is
limited lexically to repeat the same sentence while carrying
out a scene in order to emphasize nonverbal, bodily gesture,
and interaction dynamics; the second type is termed the
paraphrase play, which the actors are directed to perform
based on a scripted play although they are free to use their
own words and interpretation. Each play lasts approxi-
mately 3–5 minutes long. The behavior modalities included
in the database are audio recordings from lapel micro-
phones and full body motion capture data of each actor
(i.e., a recording of 45 markers’ ðx; y; zÞ positions using
12 Vicon cameras collected at 60 frames per second). The
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marker placement is shown in Fig. 1a. There are a total of
8 pairs of actors (16 actors in total) with 50 dyadic interac-
tion sessions in the database.

The USC CreativeIT database adopts two different
schemes for annotating three emotion attributes (valence,
activation, dominance). Each rater is asked to rate every
actor in a play with both local time-continuous and global
session-level emotion labels. The rater is instructed to rate
the local time-continuous label as he/she watches the inter-
action in real time (using a modified Feeltrace [40] interface
shown in Fig. 1b). The global emotion attributes (i.e., rated
on a scale of 1 to 5 per actor on the session-level) is then
annotated afterward. In this present work, we concentrate
on the global emotion label since it provides the most natu-
ral human annotation for the study of session-level emotion
perception. Each actor’s emotion within a session is anno-
tated by at least three different naive raters, and the average
value is utilized as the ground truth throughout the work.
The inter-evaluator agreement for global emotion label is
0.72, 0.78, 0.67 measured by Cronbach’s a, for activation,
valence, and dominance respectively.

In summary, we use a total of 90 samples of global emo-
tion annotation, full body motion capture, and audio data
(due to device failure during part of the data collection)
in this work. Table 1 further summarizes the correlations
computed between the three global emotion attributes.
The result indicates a clear trend that activation correlates
moderately with dominance, and valence does not correlate
with either dominance or activation.

2.2 Proposed Study of Thin-Sliced Emotion
Perception

A complete schematic of the present work is illustrated
in Fig. 3. Essentially, our computational study includes:
1) identifying the emotion-rich behavior segmentswith respect to
the session-level emotion attributes within each interaction
(upper portion of Fig. 3), and 2) leveraging these identified
segments of emotion-rich behavior segments to enhance multi-
modal global emotion attributes regression results (bottom
portion of Fig. 3). The procedure in deriving our thin-sliced
based session-level emotion regressors can be summarized
into the following steps:

� Step1: Extract multimodal behavior features and
quantize representations using Gaussian Mixture
Model, GMM (denoted as Xa and Xb for audio and
body language respectively)

� Step2:Discretize the global emotion annotation into 10
equally-spaced levels (denoted as Yi; i 2 ½0; 1; 2 . . . 9�)
for the three emotion attributes (denoted as Ej; j 2
{activation, valence, dominance})

– Level Yi: Ej 2 ½min ¼ 1;max ¼ 5; step ¼ 0:4�
� Step3: Select top k-segments to form the global emo-

tion-rich behavior segments (i.e., relevant thin-sliced
behaviors) by computingmutual information between
X and Y over a sub-segmentwithin a session

� Step4: Utilize GMM-based Fisher Vector encoding to
generate high-dimensional behavior feature vectors
from the selected k-segments per session

� Step5: Perform automatic global emotion attribute
regression by leveraging the identified thin-sliced
behavior segments

In the following sections, we will first focus on describing
the detailed approach in the extraction of the k thin-sliced
behavior segments (Step1-3). Section 3 will first present
analyses on various characteristics of these behavior seg-
ments. The detailed implementation of using the identified
behavior segments in the process of building automatic
regressors (Step4-5) will be elaborated later in Section 4.

2.2.1 Multimodal Behavior Feature Extraction

For the audio modality, since the actors’ audio recordings
are collected using close-talk lapel microphones, we first
apply a simple voice activity detection method based on
short-term energy. In specific, if a frame’s (1=60 seconds)
energy intensity falls below 80 percent of the mean intensity
computed over a session, it is considered as a silence frame;
then a median filter of frame size 10 is applied afterward to
smooth the voicing decision. We extract a total of 45 low-
level acoustic descriptors over the speaking portion at
60 frames per second, including 13 MFCCs, 1 fundamental
frequency, 1 intensity and their delta and delta-delta. We
additionally perform speaker-wise z-normalization on these
acoustic features to remove individual differences. This
normalization is done for each session separately, i.e., no a-
priori knowledge about the speaker identity is required.
The features are extracted using the Praat toolbox [41].

For the body language modality, we use a similar feature
extraction approach inspired from a previous work done
by Metallinou et al. on the CreativeIT database [25].
The method designs a set of psychologically-inspired body
language features using global and local coordinate system
(Fig. 2): the origin of the global coordinate system is the
center of the recording space, and the local coordinate sys-
tem for each actor is defined using the four waist markers’
average position. With the availability of 45 motion capture
markers’ 3D position ðx; y; zÞ, Metallinou et al. designed
70 features categorized into four different types: distance,
angle, position, and velocity. Aside from these 70 features,
we compute 25 extra body language features including 14
acceleration-based features (computed for all velocity-based
features), 5 distance-based features (left/right hand to head
and to torso distances and left leg to right leg distance),
3 features indicating the actor’s head ðx; y; zÞ coordinates,

Fig. 1. The USC CreativeIT database.

TABLE 1
The Inter-Attributes (Session-Level Emotion Attributes)

Correlation in the USC CreativeIT Database

Activation Dominance Valence

Activation 1
Dominance 0.568 1
Valence -0.076 -0.044 1
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3 angle-based features (computed between left and right leg
and between left/right leg and global origin). In summary,
we extract a total of 95 frame-level body language low-level
descriptors at 60 frames per second. A complete list of these
95 features is shown in the Appendix, which can be found
on the Computer Society Digital Library at http://doi.ieee-
computersociety.org/10.1109/TAFFC.2018.2816654.

2.2.2 Global Emotion-Rich Behavior Segments

Selection

We propose to select global emotion-rich behavior segments
based on identifying within-session segments (each segment
is defined as 1 percent of the entire interaction) possessing
the largest mutual information computed between session-
level emotion annotation and quantized behavior features.
The use of mutual information in measuring variable depen-
dencies have been found to be useful across applications,
e.g., feature selection for classification tasks [42], [43], pro-
sodic entrainment measures between interacting dyads [44],
and even gene expression clustering [45]. Mutual informa-
tion provides a general information-theoretic measure of
joint dependencies (i.e., those could be non-linearly related)
between two random variables as compared to measures
such as correlations and euclidean distances [46].

We compute mutual information between discretized
emotion attribute and quantized behavior features on seg-
ments within each interaction session. We first quantize
behavior LLD features into m clusters from a trained GMM
with M mixtures. The quantization is done by assigning
each frame to the mixture m with the largest posterior data
likelihood. The conventional quantization is often carried
out using k-means clustering. However, k-means clustering
can be regard as a special case of GMM if we make the
covariance matrices a constant shared by all the components
and take the limit to be 0. Further, the k-means quantization
assumes the clusters to be spherical, which makes it less
robust to complex geometrically-shaped data such as acous-
tic or body language features. Hence, we use GMM to per-
form behavior quantization in this work.

Each behavior modality can then be represented as dis-
crete random variables, i.e., Xa, Xb, denoted for acoustic
and body language behaviors respectively, where each
variable takes on a discrete value between 1 to m. With the
quantized behavior types,Xa andXb, and discretized global
emotion levels of each attribute, Yj, we can carry out our
proposed framework to select global emotion-rich behavior
segments. The method is the following:

1) Session segmentation. We first split each actor’s data
within each session into 100 equally-space segments
(i.e., each segment corresponds to 1 percent of the
entire session—roughly 2 to 3 seconds long). Each
segment is indexed as the lth segment with approxi-
mately 120 to 180 frames.

2) Top k% thin-sliced behavior segments selection. Each
actor’s sequence of quantized behavior for each seg-
ment l is denoted as Xl, and discretized sequence of
global emotion label is denoted as Yl (Yl equals to the
global emotion annotation for all l). We first obtain
joint global emotion-behavior probability mass

Fig. 2. Depiction of local and global coordinate system used for deriving
body language features.

Fig. 3. A complete workflow of our proposed global emotion regression framework: 1) Identification of global emotion-rich behavior segment as our
thin slice behavior segments for every session using mutual information, 2) session-level feature encoding of these emotion-salient behavior seg-
ments, and 3) support vector regression trained on these features to perform multimodal recognition of activation, valence, and dominance.

LIN AND LEE: COMPUTATIONAL ANALYSES OF THIN-SLICED BEHAVIOR SEGMENTS IN SESSION-LEVEL AFFECT PERCEPTION 563



function, P ðX ¼ m;Y ¼ yÞ, and the marginal distri-
butions, P ðX ¼ mÞ and P ðY ¼ yÞ using maximum
likelihood estimation. We then compute the per-
segment mutual information, Il, betweenXl; Yl using
the following equation for each lth segment

Il ¼
X
Yl

X
Xl

P ðXl; YlÞlog P ðXl ¼ m;Yl ¼ yÞ
P ðXl ¼ mÞP ðYl ¼ yÞ :

We add up per-frame information computed over
the segment length (�120-180 frames) to obtain indi-
vidual segment-level Il. There are a total of of 100 I 0ls
for each actor computed for each behavior modality
of every session. Il can be regarded as a quantification
on how much information exists between the actor’s
behavior and annotator’s emotion perception within
the designated segment l. Hence, we can select top k
segments (the thin-sliced segments) with the highest
mutual information as the thin-sliced segments.

In summary, with this procedure, we can select k seg-
ments (each segment is 1 percent of the interaction) within
each session for each emotion attribute, i.e., activation,
valence, and dominance, of each behavior modality, i.e.,
acoustics and body language, separately. These k-percent of
segments are terms as the thin-sliced behavior segments in
this work. Since our study scheme uses leave-dyad-out
cross validation, the GMMmodel for behavior quantization,
marginal PMF and joint PMF are all computed on training
set of within each cross-validation fold.

The number of behavior clusters used in quantization is
128, and the number of discretized emotion levels is 10. In
general, we observe that a more granular quantized repre-
sentation would result in a more robust estimate of mutual
information. However, too many clusters of either behav-
iors or emotion levels would lead to sparsity issue (detailed
parameter analyses are presented in Section 4.2.1. The
percentages of thin-sliced segments selected within each
session used in our analyses are shown in Table 3 (i.e., cor-
respond to the best accuracies obtained in the automatic
regression experiments described in Section 4.2.2).

3 THIN-SLICED BEHAVIOR SEGMENT ANALYSES

3.1 Analysis Setup
In the section, we present detailed analyses on the proper-
ties of these thin-sliced emotion-rich behavior segments
(Section 2.2.2). Our analyses include three major parts: 1)
time distribution 2) behavior distribution and 3) emotion

level-dependent analysis. In time distribution analysis, our
aim is to understand whether the selected behavior seg-
ments are likely to be in the beginning, middle, or ending
portion of the session. In behavior distribution analysis, we
investigate the distribution of the behavior types on these
selected segments as compared to the behavior distribution
in the original database. Lastly, we perform analysis to
understand the change of behavior types distribution as a
function of the discretized session-level emotion attributes.

All analyses are carried out with a cross-validation
(leave-dyad-out) setting, i.e., in every given session of a test-
ing dyad, we identify the per-session thin-sliced emotion-rich
behavior segments using the computed PMF from the training
set. The three different analyses results are then aggregated
over all testing sessions and reported in the following sec-
tion. This particular cross validation based analyses scheme
help support more robust results, since each dyad interacts
in multiple interactions, by performing leave-dyad-out
cross validation, it ensures the generalization of our analy-
ses (i.e., speaker-independent setup in dyad settings).

3.2 Time Analysis
We first examine where in each session are these behavior
segments being selected. By splitting every session into
three parts, i.e., the beginning 1=3 (T1), the middle 1=3 (T2),
and the ending 1=3 (T3), where each part corresponds to
approximately one minute in duration. There is a total of
100 segments per session. In each of the 90 data samples, we
select 70, 40, 20 segments in the audio modality for activa-
tion, dominance, and valence respectively, and for the body
language modality, we select 50, 80, 40 segments for activa-
tion, dominance, and valence, respectively (Table 3).

Table 2 lists the total number of segments selected for
each part of time duration of each behavior modality for the
three emotion attributes. We observe that for all of the emo-
tion attributes, the selected thin-sliced behavior segments
are located more toward the end of the session (the T3 por-
tion of each session). We additionally carry out t-test to
assess whether there are statistically differences in the aver-
age number of segments selected between each portion of
time (p < 0:05). Results indicate that for body language
modality, the number of segments selected in T3 is signifi-
cantly larger than in T1 for dominance and and valence; for
audio modality, the number of segments selected in T3 is
significantly larger than in T1 for activation (Table 2 with *).

It is quite interesting to see that by computationally iden-
tifying these thin-sliced behavior segments, it seems to

TABLE 3
The Choice of % of Segments Used in the
Analyses Section (Section 3) and Automatic

Recognition Results (Section 4)

Activation percentage

Audio 70%
Body Language 50%

Dominance percentage

Audio 40%
Body Language 80%

Valence percentage

Audio 20%
Body Language 40%

TABLE 2
The Total Number of the Identified Thin-Sliced Global Emotion-
Rich Behavior Segment Selected within Each of the Session for

the Database

Thin-sliced Behavior Segments Time Distribution

Audio Body Language

# of Total
Segments

T1 T2 T3 T1 T2 T3

Act. 2,069 2,086 2;145� 1,455 1,510 1;535
Dom. 1,212 1,168 1;220 2,377 2,310 2;513�
Val. 584 607 609 1,147 1,190 1;263�

The * indicates that mean on the number of segments selected in that particu-
lar modality is significantly higher in T3 than in T1 (p < 0:05).
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corroborate with findings concluded from the past con-
trolled psychology experimentations and theory in relating
perception, attention and emotion [47]. The recent experi-
ence tend to exert a larger effect on human’s overall percep-
tual assessment due to the continuous shaping of emotion
perception when human attentional-effect is integrated
with the sensory stimuli exposure across time.

3.3 Behavior Types Distribution Analysis
The behavior quantization process results in a total of 128
unique data-driven behavior clusters for audio and body
language separately. We then carry out our framework to
identify the salient subsegments of each session as the thin-
sliced emotion-rich behavior segments. In this part, while the
exact physical interpretation of each behavior type can be
difficult to discern intuitively, we attempt to analyze how
the distribution of these behavior types changes as a result
of this selection process.

In Fig. 4, for each modality, the left plot shows the per-
centages of behavior types in the descending order to the
50th-ranked (ranking in terms of the frequeny of occur-
rences) for the original entire database (in blue) and our pro-
posed thin-sliced emotion-rich behavior segments (in red).
Note that the x-axis indicates the rank not the actual behav-
ior cluster. From Fig. 4, as an example, we observe that by
comparing the distribution of these top-50 ranked behavior
types between the original database and the selected subset,
it is evident that the procedure effectively emphasizes some
of the behavior types. The top most occurring behavior
types take up a larger percentage of the entire database after
the selection process. This change is especially evident in
the valence dimension of audio modality and activation and
valence dimension of body language modality. By perform-
ing our behavior segment selection, it seems to reduce part
of data within each session that carry little emotion-related

information and retain (emphasize) those segments with
high-emotional content.

We further demonstrate exactly how the ranking of each
behavior cluster changes after the thin-sliced behavior seg-
ment selection procedure in Fig. 4. The Proposed bar in Fig. 4
(right) shows the sorted ranking of behavior types from top
(yellow) to bottom (dark gray) using 8 different colors, i.e.,
each color corresponds to 16 different behavior types. The
same color in both bars (the Proposed and the Original) indi-
cate the same exact behavior types. By referencing the same
color in the Original bar, which is also sorted in terms of
ranking from top to bottom, we could see then the changes
of behavior distribution from the original entire database to
the thin-sliced emotion-rich behavior segments.

Overall, we can see that our proposed thin-sliced selection
method does not alter the rank order on behavior clusters’
frequency of occurrences too drastically, i.e., most of the
’yellow’-behavior clusters still remain on the top and the
‘dark gray’-behavior types still stay on the bottom more or
less. Althoughwe do observe that the distribution in themid-
ranked behaviors can be re-arranged and mixed. By examin-
ing the two different plots in Fig. 4, we note that our thin-
sliced behavior segment selection framework essentially per-
forms emphasis on certain behavior clusters though it does
not alter the rank order (the most to least occurring behavior
types) too much. The effect of emphasizing certain behavior
types with high emotion-information is likely to underscore
the reason of our improved global emotion recognition corre-
lations (Section 4.2).

3.4 Global Emotion Level-Dependent Analysis
In Section 3.3, we present an analysis on the change of
behavior type distribution after we perform thin-sliced
behavior segments selection. In this section, we analyze this
change as a function of each discretized global emotion level

Fig. 4. Figure plots the percentages of behavior clusters in the descending order to the 50th-ranked (in terms of the frequeny of occurrences) clusters
(the left plot) for the original entire database (in blue) and our proposed thin-sliced segments (in red) of each behaviormodality. Also, theProposed color
bar in this figure (right) shows the sorted ranking of behavior types from top (yellow) to bottom (dark gray) using eight different colors, i.e., each color
corresponds to a total of 16 behavior clusters. The same color in both bars (theProposed and theOriginal) indicate the same exact behavior clusters.
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(the ten levels) for the three emotion attributes in both
behavior modalities

While we observe that our selection method essentially
alters the composition of behavior types that seem to bear
little emotion information and emphasizes those that are
emotion-rich, this does not correspond to directly choosing a
reduced number of behavior types, i.e., decreasing behavior
diversity overall for each emotion attribute. In fact, in Table 4,
we list the total number of unique behavior types (denoted as
Uniq #) for the original entire database and our proposed
framework for each discretized level of the three emotion
attributes. Under theAll LV column,we can see that even after
applying our thin-sliced segment selection methodology, the
total number of unique behaviors for each emotion attributes
of individual behavior modality remains to be around 128.
It shows that our proposed emotion-rich behavior segments
still contain the complete variety of behavior manifestation as
the original database justwith altered distributions.

There is, however, a very interesting point that we
observe in Table 4. If we break down the total number of
unique behavior types across each of the discretized global
emotion level (LV0 - LV9), each level of emotion attribute in
the original database contains pretty much the complete
variety of the these behavior clusters. After the selection, we
observe that our methodology reduces the total Uniq # at
the extreme emotion levels, i.e., LV0 and LV9, across all
emotion attributes in the body language modality. Specifi-
cally, in the body language modality, the total number of
unique behavior types goes from 102 to 75 at the LV0, and
52 to 20 at the LV9 for valence dimension—the same trend
also holds for activation and dominance. It implies that the
raters are likely be influenced by a more limited types of
behaviors among a wide variety of behaviors when annotat-
ing the emotions of those parts of the session at the level of
extreme. For the mid-level emotions, this effect is minimal.
The analysis also implies even though the total number
of behavior manifestations is still large for the portions
of data that annotators decide to be at the extreme level,
there in fact is only a relatively limited number of behavior
manifestations that actually possess meaningful emotion
information—as evident by the reduction of Uniq # in those
extreme levels.

Furthermore, in Fig. 5, we also present the total propor-
tions of data from the top five most occurring behavior types
within the Original and the Proposed database (denoted as
Top5 Proportion). Across all individual levels for all emotion
attributes and behaviormodalities, by comparing to the orig-
inal database, the top 5 most occurring behaviors covers
much larger percentage of data—a result reinforcing the
finding summarized in Fig. 4.

In summary, we present detailed analyses of the
proposed thin-sliced emotion-rich behavior segments in
Section 3. We obtain several insights about their properties:

1) Time distribution. Our analyses indicate that thewithin-
session time distribution of these sliced behavior seg-
ments for both audio and body language modalities
tend to be located toward the ending portion of an
interaction.

2) Behavior distribution. The behavior distribution analy-
sis shows that our proposed framework is not simply
choosing a subset of behavior clusters for each emo-
tion attribute. It effectively changes the overall distri-
bution by emphasizing those that may carry more
emotion information and not alter the rank order
(relative occurrence frequencies) too drastically.

3) Emotion level-dependent analysis. In analyzing the
behavior cluster distribution as a function of each
discretized emotion level, our analyses indicate that
the change in the distribution occurs across all indi-
vidual levels. Furthermore, the method does not sim-
ply select a subset of behaviors as the total unique
number of behavior types remain consistent except
at the extreme levels of emotion, where there seems
to be a smaller set of behavior types that carry mean-
ingful session-level emotion information.

4 SESSION-LEVEL EMOTION REGRESSION

In this section, we will describe our automatic session-level
emotion regression framework by leveraging the identified
thin-sliced emotion-rich behavior segments (Step 4-5 in
Section 2.2.2). Furthermore, we also detail our experimental
setup and discuss the results obtained.

TABLE 4
Table Lists the the Unique Number of Behavior Clusters in Each of the Global Emotion Level (Uniq. #)

Audio
LV0 LV1 LV2 LV3 LV4 LV5 LV6 LV7 LV8 LV9 All LV

Act. Entire(Uniq. #): N/A 128 128 128 128 128 128 128 128 128 128
Proposed(Uniq. #): N/A 126 128 128 128 128 128 128 128 128 128

Dom. Entire(Uniq. #): N/A 128 128 128 128 128 128 128 128 128 128
Proposed(Uniq. #): N/A 127 128 128 128 128 128 128 128 127 128

Val. Entire(Uniq. #): 128 128 128 128 128 128 128 128 128 128 128
Proposed(Uniq. #): 117 128 128 128 128 128 128 104 125 111 128

Body Language
LV0 LV1 LV2 LV3 LV4 LV5 LV6 LV7 LV8 LV9 All LV

Act. Entire(Uniq. #): N/A 88 109 109 110 120 114 122 109 77 128
Proposed(Uniq. #): N/A 48 81 85 101 114 99 116 100 54 126

Dom. Entire(Uniq. #): N/A 99 106 116 114 120 120 116 100 88 128
Proposed(Uniq. #): N/A 93 100 115 111 118 118 114 94 81 127

Val. Entire(Uniq. #): 102 106 119 118 115 123 112 97 90 52 128
Proposed(Uniq. #): 75 88 114 105 94 114 88 59 53 20 125

‘Entire’ and ‘Proposed’ denotes the numbers of unique behavior types in the original database and after our proposed thin-sliced selection process
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4.1 Thin-Sliced Session-Level Emotion Regressor

Our proposed automatic session-level emotion regression is
to first build a regressor based on the identified thin-sliced
behavior segments. The overall architecture (i.e., training
and testing) procedure is described as follows (the first two
steps are the same as described in Sections 2.2.1 and 2.2.2):

� Step1: Extract multimodal behavior features and
quantize representations using GMM and discretize
the global emotion annotation into 10 equally-spaced
levels

� Step2: Select top k-segments to form the global
emotion-rich behavior segments by computing
mutual information between X and Y (all done only
on the training set)

� Step3: Utilize GMM-based Fisher Vector encoding
approach to generate a fixed session-level high-
dimensional behavior feature vector from the selected
k-segments per session in the training set

� Step4: Train an emotion regressor for each of the three
emotion attributes using support vector regression on
these thin-sliced FV behavior feature vectors (Step 3).

� Step5: At testing, since we do not have knowledge
of the true global emotion levels of that particular
session, we generate 10 different emotion-level depen-
dent thin-sliced behavior segments, (i.e., by assuming
the testing session is one of the 10 emotion levels, car-
rying out Step 2-3 to derive the behavior segments,
then iterating over ten levels). These segments are

further encoded using the FV approach. Finally, we
average the regression output result by passing each
of these 10 emotion-level dependent thin-sliced FVs to
the trained session-level emotion recognizer (Step 4)
to be our regressed value.

The use of GMM-based Fisher-vector encoding on the
low-level features within each session data is carried out to
learn a high-dimensional feature representation as a vector
input to the machine learning algorithm, i.e., support vector
regression (SVR). FV encoding has been shown to be
successful in computer vision tasks (e.g., [48], [49], [50]),
and has recently been demonstrate to possess competitive
modeling power in speech-based paralinguistic and emo-
tion recognition tasks (e.g.,[51], [52], [53]). FV has the advan-
tage of both being a generative and discriminative feature
representation model. It encodes both first and second order
statistics. We will briefly describe the FV encoding below:

FV encoding can be derived as a special case of construct-
ing Fisher kernel. The use of Fisher kernel is to measure the
similarity between the two sets of data samples. Let’s define
a scoring function to measure similarity

GX
� ¼ r� logu�ðXÞ; (1)

where u�ðXÞ denotes the likelihood of data X given the
probability distribution function PDF, u�. Here the choice of
PDF is Gaussian Mixture Model (GMM), and � represents
the parameters of GMM, i.e., ð �w; �m;SÞ. GX

� is the direction
where � has to move to provide a better fit between u� and
X. Hence, if we can imagine the behavior feature over the

Fig. 5. Figure plots the percentage of data that the top five behavior types account (Top5 proportion) for each emotion attribute of each behavior
modality in each of the global emotion level.
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entire database is distributed as a GMM. By measuring the
fit between each session’s local emotion-rich behavior
segments’ data to this specified GMM, we then can encode
the sequence of low-level features for each session intoGX

� .
Furthermore, we would like to obtain a normalized GX

�

better suited for SVM. Fisher Information Matrix (FIM), F�,
from the theory of information geometry is hence utilized

F� ¼ EX�u� ½GX
�G

X0
� �;

and the normalizedGX
� , denoted as gX� , can be defined as

gX� ¼ F
�1=2
� GX

� ¼ F
�1=2
� r� logu�ðXÞ: (2)

In Equation (2), the term gX� is the so called Fisher vector.
Let X ¼ �xt; t ¼ 1 . . .T1 and assume each �xi is i.i.d. then

gX� ¼
XT
t¼1

F
�1=2
� r� logu�ðxtÞ;

we additionally know that u�ðxÞ is a GMM with k mixtures
expressed as

u�ðxÞ ¼
XK
k¼1

wkukðxÞ;

with � ¼ fwk;mk;Sk; k ¼ 1; . . . ;Kg correspond to mixture
weight, mean, and covariance matrix for each mixture of
Gaussian. These parameters are of the following form:

XK
k¼1

wk ¼ 1

ukðxÞ ¼ 1

ð2pÞD=2jSkj1=2
e �1

2ðx�mkÞ0S�1
k ðx�mkÞð Þ;

covariance matrices are set to be diagonal, i.e.,
Sk ¼ diagðs2

kÞ.
We can put together Equation (2) with ukðXÞ using the

parameters described above. First, we define a probability
gtðkÞ as

gtðkÞ ¼
wkukðxtÞPK
j¼1 wjujðxtÞ

:

From this, we can derive the gradient with respect to mk; sk

of a data point xt

rmk
logu�ðxtÞ ¼ gtðkÞ

xt � mk

s2
k

� �

rsk logu�ðxtÞ ¼ gtðkÞ
ðxt � mkÞ2

s3
k

� 1

sk

 !
:

With these, we derive the Fisher encoding of X for the first
and second order statistics below

gXmk
¼ 1

T
ffiffiffiffiffiffi
wk

p
XT
t¼1

gtðkÞ
xt � mk

sk

� �
(3)

gXsk ¼ 1

T
ffiffiffiffiffiffiffiffi
2wk

p
XT
t¼1

gtðkÞ
ðxt � mkÞ2

s2
k

� 1

 !
: (4)

This results in a fixed dimension vector at the session-level
by concatenating the output from Equations (3) & (4), i.e.,

FV ¼ gXm1
; gXs1 ; . . . ; g

X
mk
; gXsk ; . . . ; g

X
mK

; gXsK

h i
: (5)

At last, we employ the method of improved FV by
performing L2 normalization [54]. In summary, we encode

the sequences of individual behavior modality feature,
i.e., those gathered from the k-global emotion-rich behavior
segments, with the FV encoding (defined in Equation (5)).
The use of FV-encoding is similar in principal to the use of
GMM supervector [55] and i-vector approach [56] in tasks
of speaker verification. These different methodologies,
however, differ in that GMM-supervectors and i-vectors
are generative models where the encoded representations
for a data sample are mainly derived using maximum
a-posterior adaption on GMM mean supervectors (i-vectors
further perform dimensional reduction). The FV encoding
is both a generative and discriminative approach due to its
use of the Fisher scoring criteria to encode a data sample;
it also encodes both parameters of means and variances.

4.1.1 Experimental Setup

We compare our proposed emotion regression method
(Section 4.1) to two other differentmethodologies listed below:

1) Baseline. We use 100 percent of behavior data (i.e., the
entire session) to derive the FV representation used
for training the session-level emotion regressor. This
method can also regard as the conventional method
without selecting the emotionally-salient portion.

2) Random. We perform within-session random sub-
sampling to generate the thin-sliced behavior seg-
ments used for deriving FV representation in the
training of the session-level emotion regressor (i.e.,
randomly select k segments from 100 sub-partitions
in each interaction without using the mutual infor-
mation based selection).

All of the experiments are carried out in a leave-dyad-
out cross validation (speaker-independent setup in dyad
settings). The metric of evaluation is the average spearman
correlation obtained for each testing dyad.

Major parameters used: GMM cluster number used for
each behavior modality quantization is 128. The mixture
number used in the session-level Fisher-vector encoding is
8 for audio and 2 for body language for all three emotion
attributes. The parameter k% of the thin-sliced behavior seg-
ment selection of each modality for each emotion attribute is
listed in Table 3. The SVR is trained using C ¼ 1.

Finally, since the SVR is trained on each behavior modal-
ity, the multimodal fusion is carried out using a simple
linear late fusion technique

SMultimodal ¼ a� SAudio þ ð1� aÞ � SBodyLanguage;

where S� indicates the regressed session-level emotion score
from individual modality respectively, and a is determined
using greedy search on the training set within the interval
½0; 1�, and we set this number fixed across all folds in order
to reduce the potential issue in over-fitting where every fold
can have a very different weight.

4.2 Results and Discussions
A summary of recognition accuracies is presented in Table 5.
The data proportion k is chosen empirically and its effect will
be analyzed in Section 4.2.2. It is evident that the proposed
thin-sliced-based global emotion regressor, i.e., focusing on the
emotionally-salient behavior segments, outperforms the baseline
model, i.e., using the entire sessions. In specifics, for the audio
modality, our proposed thin-sliced global emotion regression
obtains 16.27, 4.4, and 15.72 percent relative improvement
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over the baseline model on attributes of activation, domi-
nance, and valence, respectively. In the body languagemodal-
ity, our framework improves 8.45 and 25.15 percent over
the baseline model on activation and valence respectively.
Finally, by fusing audio and body language modality, we
obtain promising Spearman correlations of 0.605, 0.633, and
0.672 on activation, dominance, and valence. The only excep-
tion is in the body language modality for the dominance
attribute. The baseline model itself already achieves 0.609 cor-
relation, which may indicates that the perception of global
dominance, when influenced by body language behaviors,
could largely be based on the entire session. We hypothesize
this could due to the nature in the design ofActiveAnalysis in
eliciting behaviors. Specifically in the 2-sentence exercises,
actors’ body language behavior need to be highly utilized
when playing a force and counter-force interaction (e.g., con-
tinuous holding, grabbing, getting in the face of the other per-
son)with highly restricted lexical content.

From Table 5, we also provide a comparison to the random
selection baseline. For the random experiment, we select the
within-session behavior segments randomly instead of using
our proposed method. We report results by selecting the
same portion of data used in the proposed method. Clearly
from the results, the improvement in our method is not due
to a simple reduction in the amount of data; the selected
thin-sliced behavior segments are those with higher emo-
tional content with respect to the global affect perception.

In summary, our proposed multimodal thin-sliced based
global emotion regressor obtains promising correlations
of 0.605, 0.633, and 0.672 on attributes of activation,
dominance, and valence respectively. The amount of data
required for audio is 70, 40, and 20 percent for activation,
dominance, and valence respectively, and by selecting these
thin-sliced segments, we obtain improvement in the pre-
diction correlations for all three attributes.

4.2.1 Analyses of Parameters Choice

Wewill present analyses and discussions on the emotion rec-
ognition correlations obtained as a function of the two major
parameter choices for our proposed framework in this section:

� Number of discretized emotion levels (Y ): Table 6 shows
different emotion regression accuracies obtained as

a function of different discretized levels of each
emotion attribute. We observe that the accuracy
improves with an increased number of discretized
levels. However, if we further discretize each emo-
tion attribute to a even finer granularity (e.g., 15 lev-
els), the sparsity becomes an issue where only few
or even none of the samples would fall in certain
emotion levels. Fig. 6 shows a histogram distribution
of our samples as we set different numbers of dis-
cretized levels. The appropriate granularity in the
discretized emotion annotation is necessary in robust
identification of emotion-rich behavior segments.

� Number of quantized behavior clusters (X): The mutual
information is computed between discrete represen-
tation of both behavior and emotion attributes. We
further report emotion regression results obtained as
a function on the number of clusters used (mixtures
of GMM) for the extracted low-level descriptors in
Table 7. A similar trend is observed in the number
of quantized behavior clusters and the number of dis-
cretized emotion levels. The accuracy improves as the
number of quantized behavior clusters increases;
however learning instability is observed if we con-
tinue to increase the number of mixtures used.

In summary, we observe a trend that the correlations
improve as we increase the number of discretized emotion
levels and the quantized behavior clusters. This is poten-
tially due to a more reliable and robust estimation of mutual
information used in our framework. However, the benefit of
increasingly granular quantization often plateaus due the
amount of data available.

4.2.2 Effect of Different Data Proportion

In this section, we further provide analysis on the prediction
correlations obtained as a function of the k% within-session
data selection. The modality-wise results are summarized
in Fig. 7. In the body language part, for all three attributes,
we observe a tendency that the prediction accuracy slightly
improves (especially evident in the valence attribute) as the
percentage of thin-sliced behavior segments reduces. This
phenomenon, however, would plateau and start to show a

TABLE 5
Summary of Global Emotion Prediction Results for Baseline, Oracle, Proposed, and Random Selection

Audio
baseline(k) proposed(k) random(k)

Activation 0.497 (k ¼ 100%) 0.578 (k ¼ 70%) 0.429 (k ¼ 70%)
Dominance 0.317 (k ¼ 100%) 0.331 (k ¼ 40%) 0.339 (k ¼ 40%)
Valence 0.426 (k ¼ 100%) 0.493 (k ¼ 20%) 0.354 (k ¼ 20%)

Body Language
baseline(k) proposed(k) random(k)

Activation 0.402 (k ¼ 100%) 0.436 (k ¼ 50%) 0.368 (k ¼ 50%)
Dominance 0.609 (k ¼ 100%) 0.603 (k ¼ 80%) 0.595 (k ¼ 80%)
Valence 0.497 (k ¼ 100%) 0.622 (k ¼ 40%) 0.494 (k ¼ 40%)

Fusion Model
baseline(a) proposed(a) random(a)

Activation 0.527 (a = 0.6) 0.605 (a = 0.8) 0.493 (a = 0.6)
Dominance 0.652 (a = 0.1) 0.633 (a = 0.3) 0.604 (a = 0.4)
Valence 0.591 (a = 0.6) 0.672 (a = 0.6) 0.511 (a = 0.4)

The accuracy is measured using the average Spearman correlation of each cross validation fold. The table present all details for audio,
body language, and fusion model of the recognition accuarcy, data proportion k and fusion weight a.
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detrimental effect when the percentages of behavior data
remain are too little (e.g., 10–30 percent).

A similar trend also holds in the audio modality. In gen-
eral, in the audio modality, the amount of thin-sliced behav-
ior segments required is fewer than the body language
modality.When comparing between the three emotion attrib-
utes, we observe that valence attributes use lesser amount of
data compared to activation; dominance requires a close
to 100 percent (entire session) worth of data, i.e., reinforcing
the finding in Section 4.2.

Furthermore, we report various fusion results by com-
bining different k% segments from audio and body lan-
guage modalities (Table 8). The results indicate that the
appropriate choice of k% from each behavior modality is
essential in obtaining results above baseline accuracies. This
composition seems to be attribute-dependent, i.e., differs

between activation, valence, and dominance. For example,
in activation dimension, our proposed method uses
70 percent audio and 50 percent body language. Keeping
audio at around 70 percent seems to be important in reach-
ing accuracy above baseline, and the added benefit in incor-
porating body language arises from choosing k to be
approximately 50 percent. In terms of valence dimension, our
proposed method uses 20 percent within-session segments
for audio and 40 percent for body language. The 40 percent
for body language seems to be critical in obtaining improved
correlation beyond baseline. In case where 90 percent audio
and 40 percent of body language is used, the a needs to be set
at 0.3 indicating that the majority of the regression contribu-
tion come from the body languagemodality.

While the exact relationship between different percen-
tages of modality-specific data needed for each emotion
attribute is difficult to rigorously tease apart due to the
intertwining effect between the controlling factors of a
fusion parameter and the k% parameter. However, our
analyses indicate ranges of data proportion that is likely to
be effective may differ for each emotion attribute in the Cre-
ativeIT database. The generalization of these insights to
other emotion databases will be required to further substan-
tiate these interpretations on humans perception.

5 CONCLUSIONS AND FUTURE WORKS

Human perception is thin-sliced in nature. In this work, we
present computational analyses by identifying session-level
emotion-rich behavior segments using a framework based
on mutual information. With the thin-sliced identification
framework, our proposed multimodal (audio and body
language) global emotion regressor achieve an accuracy of
0.605, 0.633, and 0.672 on attributes of activation, domi-
nance, and valence respectively, which outperforms

TABLE 6
Correlations Obtained with Different Number of

Quantized Emotion Attributes

Activation Correlation

Y=10 (proposed) 0.605 (a = 0.8)
Y=5 0.552 (a = 0.7)
Y=3 0.540 (a = 0.8)

Dominance Correlation

Y=10 (proposed) 0.633 (a = 0.3)
Y=5 0.617 (a = 0.1)
Y=3 0.609 (a = 0.3)

Valence Correlation

Y=10 (proposed) 0.672 (a = 0.6)
Y=5 0.603 (a = 0.4)
Y=3 0.500 (a = 0.4)

Fig. 6. Figure shows the a histogram of sample distribution for different number of emotion discretization (3, 5, 10, and 15 levels) for activation, domi-
nance, and valence.
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framework using the entire session. The amount of thin-
sliced data needed varies with the type of emotion attribute,
and we observe that valence requires the least amount. We
also present detailed analyses on these thin-sliced segments
in order to bring additional insights about the potential
human affect perception mechanism. We demonstrate that
the time distributions of data within each session are located
skewed toward the end of the session for both audio and

body language thin-sliced segments. Furthermore, we show
that our proposed thin-sliced selection technique effectively
change the overall behavior distribution, i.e., emphasizing
those behavior parts that are more emotion-information
rich. This phenomenon is especially noticeable at the
extreme emotion level. It seems to indicate that for those
extreme emotion levels, the underlying human perception
mechanism is likely to be affected by a few salient behavior
manifestations.

There aremultiple threads of futurework. On the technical
side, we observe in this work that when comparing to valence
and dominance attributes, the overall accuracies tend to be
lower for activation in general. The thin-sliced emotion per-
ception mechanism may be fundamentally different between
these three emotion attributes, wewill develop computational
frameworks that can better model the thin-sliced perception
specifically for activation. Second, the current emotion-rich
behavior segments are selected per modality separately. How-
ever, when annotators are being exposed to these data, they
observe and make a judgment holistically and multimodally.
We will develop algorithms to identify these segments jointly
between audio and gestural information. Third, our proposed
automatic thin-sliced affect regressor is done by averaging
emotion-level dependent regression outputs. We will further
investigate a joint confidence-weighted combination of these
regression outputs multimodally to improve our framework.
With additional insights obtained about the properties and
characteristics of these emotion-rich behavior segments within
each interaction session, we hope to inspire and develop

TABLE 7
Correlations Obtained with Different Numbers of

Quantized Behavior Clusters

Activation Correlation

128-GMM (proposed) 0.605 (a = 0.8)
64-GMM 0.535 (a = 0.9)
32-GMM 0.524 (a = 0.6)
16-GMM 0.507 (a = 0.9)

Dominance Correlation

128-GMM (proposed) 0.633 (a = 0.3)
64-GMM 0.616 (a = 0.2)
32-GMM 0.577 (a = 0.6)
16-GMM 0.606 (a = 0.3)

Valence Correlation

128-GMM (proposed) 0.672 (a = 0.6)
64-GMM 0.585 (a = 0.5)
32-GMM 0.536 (a = 0.6)
16-GMM 0.567 (a = 0.6)

Fig. 7. Figure shows the prediction correlations obtained for different percentage (k) of thin-sliced behavior data selected using our proposed frame-
work for each of the two behavior modalities separately for activation, dominance, and valence.
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further advanced and sophisticated algorithms to improve
much less-investigated session-level (i.e., long durational
behavior data) emotion recognition.

Furthermore, we will immediately initiate a human
perceptual experiment protocol, i.e., recruiting additional
annotators to judge the emotional content on the extracted
thin-sliced behavior segments in order to provide further
validity of this data-driven framework. By cross-referencing
this data-driven framework in capturing emotion-rich
behavior segments to the rigorous design of human percep-
tual experiment, we aim at knowing the limitation and
potential of our proposed framework. In the long run, our
aim is to understand the underlying thin-sliced perception
mechanism of various emotion attributes that human pos-
sess in tasks of performing holistic judgment when observ-
ing continuous affective multimodal behavior displays. We
hope to advance both scientific understanding of human
perception of affect and also inspire novel technical algo-
rithms of affect recognition framework that can supplement
the emerging research efforts into deriving analytics for
cross-domain human-centered applications.
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